

Stabilizing Cathode/Electrolyte Interphase by New Electrolyte Design

Zhengcheng (John) Zhang (P. I.)
Argonne National Laboratory

June 9-13, 2019

Project ID # BAT374

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start: Oct. 1, 2018

Project end: Sept. 30, 2021

Percent complete: 33%

Budget

- Total project funding
 - 100% DOE funding
- Funding for FY 2019: \$350 K

Barriers

- Cycle and calendar life Next generation batteries
- Thermodynamic stability at cathode/electrolyte interphase
- Abuse Tolerance

Partners

- PNNL
- NREL
- University of Illinois Chicago (UIC)
- Northern Illinois University (NIU)
- Lydall Performance Materials (Netherlands)
- Project Lead: ANL

Relevance - Project Objectives

- Next-generation lithium-ion battery requires high-voltage high-energy density for longrange electric vehicle applications.
- □ Cathode materials with high voltage (> 4.3 V) and high capacity (>200 mAhg⁻¹) with low cost are greatly demanded.
- ☐ The performance of high-voltage highenergy cells are compromised due to the instable cathode/electrolyte interphase caused by the decomposition of electrolytes and transition metal dissolution-diffusiondeposition cycle.
- □ The objective of this project is to design and develop stable electrolyte materials that can thermodynamically stabilize the cathode/electrolyte interphase.
- The new electrolyte materials could tolerate high charging voltages (>5.0 V vs Li+/Li) of the Ni-rich, low-Co cathodes and are compatible with other cell components.

Technical Approach and Strategy

Electrolyte Additives

Anode SEI A LUMO Ewindow Cathode SEI Cathode Passivation Additive

Electrolyte Solvents

- ✓ Molecular design of additives that could be oxidativly decomposed and deposited on the surface of cathode forming a cathode-electrolyte-interphase (CEI) to provide kinetic stabilization at the cathode/electrolyte interphase at high voltages.
- ✓ Design and develop new electrolyte solvents to provide thermodynamic stability at cathode/electrolyte interphase at high voltages. Incorporation of electron-withdrawing groups (fluorine and fluorinated alkyl) to the conventional solvents could lower the HOMO energy level, thus expand the electrochemical window up to 5.0 V vs Li⁺/Li.

Technic Accomplishments and Progress

- ☐ The formulated FEC/F-EMC and DFEC/HFDEC electrolytes are stable at high voltage as evidenced by the results from linear sweep voltammetry (Pt/Li/Li cell) and potentiostatic-hold experiment (NMC532/graphite charged to 4.5 V and hold for 60 h.
- □ NMC532/graphite full cell cycling data (4.5-3.0 V, C/3) indicate both electrolytes not only stabilize the cathode surface at high charging voltages, but also are capable of forming the SEI via reductive decomposition on the graphite anode.

HRTEM/EELS and **SEM** Analysis of Cycled Electrodes

500

Cycled in Gen 2 electrolyte

Graphite

Pristine

5 nm

Cycled in FE-3 electrolyte

800

700

Energy Loss (eV)

Core

900

Cycled in Gen 2 electrolyte

Graphite anode

Quantify Transition Metal Dissolution by ICP-MS

- For all NMC532 samples, Ni most likely to leave the cathode.
- Vastly different Mn dissolution behavior with Gen 2 and fluorinated electrolyte F-EL.
 - ✓ Large amount of Mn dissolution (beyond stoichiometric composition)
 - ✓ Requires oxygen loss (no Mn³+ with normal battery operation)
- Co has similar electrolyte concentration but very low content deposited on the anode.
- o Much more total TM measured in cycled Gen 2 electrolyte.

One-Step Synthesis of Ionic Liquids: High Purity, Low Cost

Traditional synthesis of IL:

- Multiple steps, labor intensive
- Possible halide contamination
- Li salt availability and purity

New synthesis of IL: Halide-free

- ✓ One step synthesis: green chemistry
- ✓ Halide-free synthesis
- ✓ Ultra-high purity starting material
- ✓ MERF: scale-up of MeFSI

Voltage Stability of IL-Electrolyte: Cyclic Voltammetry

✓ CV data indicate both IL and IL-LiFSI electrolytes are stable up to 5.5 V vs Li⁺/Li, stable at the interface of most cathode materials with high-voltage and high-capacity.

LiFSI Concentration Impact on Cell Performance

Stainless Steel (SS) Corrosion: Incompatibility Issue

- All IL-electrolytes could passivate Al current collector, but severe corrosion was observed when stainless steel (SS) spacer is present in the coin cell.
- IL-electrolyte with high LiFSI concentrations could kinetically slow down the SS corrosion process, thus enable the normal cycling of NMC cells with regular cell configuration.

SS Corrosion-Free LiNi_{0.5}Mn_{0.3}Co_{0.2}O₂/Li Cell Performance

Coin cell parts: Al-coated Cutoff voltage: 4.3-3.0 V

Cycling T = 30°C

Impact of High Salt Concentration on High Voltage Cells

- □ 5 M LiFSI IL electrolyte showed exceptional capacity retention with close to 100% Coulombic efficiency.
- ☐ When cycled at 4.7 V, the NMC/Li half cells showed much improved high voltage performance than Gen 2.

Wetting Issue with PP/PE/PP Separators

Separator	Pore Size (µm)	Porosity (%)	Thickness(µm)
Celgard 2325	0.028	39	25
Solupor 3P07	0.7	83	20
Whatman GF/F	0.7	100	420
Solupor 7P03	0.3	85	50

- ✓ IL-electrolytes (low and high salt concentrations) couldn't wet the hydrophobic polyolefin based separators.
- ✓ Glass-fiber and paper based separators are compatible with IL electrolytes with Solupor 7P03 shows the best cell performance.

Viscosity, Conductivity and Li⁺ Transference Number

[] :EO[]	Molality of LiFSI (mol/kg)	Mole ratio of each ion		Via a a aitu	Conductivity	1 :	
[LiFSI] (mmol)		Li+	PMpip+	FSI ⁻	Viscosity cP	S/cm @ RT	Li+ transference number
0	0	0	0.50	0.50	87.25	3.50	
1	0.76	0.10	0.40	0.50	133.5	2.24	0.164
2	1.5	0.16	0.34	0.50	249.0	1.25	0.185
3	2.3	0.21	0.29	0.50	396.0	0.819	0.340
4	3.0	0.25	0.25	0.50	601.3	0.555	0.344
5	3.8	0.28	0.22	0.50	936.6	0.353	0.475

- ✓ High t_{Li+} for highly concentrated IL-electrolyte facilitates the Li⁺ transfer in the electrolyte bulk.
- ✓ Although six times higher viscosity, 5 M IL electrolyte showed slightly low voltage polarization and delivered a slightly higher capacity.

Conductivity Enhancement for Improved C-Rate

5 M LiFSI PMpipFSI Electrolyte

NMC532/Li half cell 4.3 – 3.0 V 3 formation cycles @ C/20

T= 55°C, C/3 cycling

H₂O added as diluent, C/3 cycling

- ✓ Increase the temperature will further enhance the conductivity of the electrolyte yielding a high C-rate.
- ✓ H₂O acts as a great choice of diluent for the high-concentration IL electrolytes, providing a facile Lit conducting channel.

Compatibility with Anode: NMC532/Si-Graphite Full Cell

NMC532/Si-Graphite full cell

Cutoff Voltage: 4.2-3.0 V

Current: C/10

Cycling $T = 30^{\circ}C$

- ✓ Both 1 M and 5 M IL electrolyte cells show improved capacity retention compared with Gen 2 conventional electrolyte cell in NMC/Si-Gr full cell.
- ✓ It is manifest that 5 M high concentration full cell outperforms the 1 M low concentration one, indicating a different mechanism.

Degradation Mechanism of High-Voltage Li-ion Battery

Snapshot from Molecular Dynamics Trajectory

Argonne National Laboratory is a
U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

MD Simulation: Quantitative Structural Analysis

✓ The strong correlations of cation-anion and anion-lithium ion reveal highly ordered nanostructural organization, where lithium ions are distributed between solvation layers of cation-anion.

Spectroscopic Evidence: Raman Analysis

- ✓ -SNS- and -SO₂- vibrational peaks in FSIare shifted to lower wavenumbers in Pip₁₃FSI than those in LiFSI salt
- √ Pip₁₃⁺ has a band showing at the same wavenumber as FSI⁻
- ✓ The main shifts are observed in the range of 700-1500 cm⁻¹ when [LiFSI] increases (≥2 M).
- v_s,_{SNS} band of FSI⁻ is shifted to **higher** wavenumber, which is typical feature of Li-coordinated ion pairs or aggregated clusters. For 2 M solution, it showed at 740 cm⁻¹ and further increased to 750 cm⁻¹ for the 3-5 M solutions.
- √ v_s,_{SO2} is also **blue-shifted** to 1226 cm⁻¹ for 2 M solution and at 1231 cm⁻¹ for 3-5 M solutions.

Response To Previous Year Reviewer's Comments

This project is a new start

Collaboration and Coordination with Other Institutions

Dr. Jason Croy – Argonne CSE, Cathode materials

Dr. Larry Curtiss - Argonne MSD, DFT calculation

Drs. Wei Jiang & Ying Li – Argonne Leadership Computing, MD simulation

Dr. Gregory Krumdick and Krzysztof Pupek – Argonne AMD, *Precursor scale-up*

Prof. Reza S. Yassar – University of Illinois - Chicago, HR-TEM/EELS

Prof. Tao Xu – Northern Illinois University, Cathode surface protection

Dr. Sheng S. Zhang, US Army Research Laboratory, Cathode and Additive

Dr. Peter de Wit – Lydall Performance Materials (Netherlands) - Separator

Remaining Challenges and Barriers

Synthetic challenges for fully fluorinated compounds as potential high-voltage electrolyte solvents - fluorinated carbonates and fluorinated sulfones.
Further enhance the Li ⁺ transport in super-concentrated ionic liquid-based electrolytes, and further improve the C-rate or power capability of the high voltage Li-ion batteries.
SEI formation mechanism on graphite anode; tailor the formation of solid- electrolyte-interphase (SEI) on the graphite anode: low interfacial impedance and fast Li ⁺ transport kinetics.
Molecular dynamics simulation Further improve the chemical/electrochemical stability at the Silicon/electrolyte interface to enable the high-voltage high-energy lithium-ion battery.

Proposed Future Research

- ✓ Optimization of *Ionic Liquid-Li Salt-Diluent* electrolyte systems for low viscosity, high Li⁺ transport and high C-rate and power capability.
- ✓ Molecular dynamics simulation for bulk properties of *Ionic Liquid-Li Salt-Diluent* electrolyte.
- ✓ Electrochemical evaluation of *Ionic Liquid-Li Salt-Diluent* electrolyte in high-voltage cathode half cells.
- ✓ Modeling the thermodynamics at cathode/electrolyte interphase at various delithiation stage (SOC) of Ni-rich low-cobalt cathode.
- ✓ Evaluation and modeling the SEI formation at anode/electrolyte interphase both graphite and Si anode.
- ✓ Electrochemical evaluation of *Ionic Liquid-Li Salt-Diluent* electrolyte in high-voltage Li-ion full cells.
- ✓ Design and synthesis of new functionalized ILs with tailored properties and SEI formation capability.

Summary

A polyfluorinated carbonate electrolyte comprising 1.0 M LiPF₆ in difluoroethylene carbonate (DFEC)/bis(2,2,2-trifluoroethyl) carbonate (HFDEC) (3/7 in weight ratio) was demonstrated in a sa a high-voltage enabling electrolyte was demonstrated in a LiNi_{0.5}Mn_{0.3}Co_{0.2}O₂/graphite full cell.

The fluorinated electrolyte showed much improved Coulombic efficiency and capacity retention when a high cutoff voltage (4.5 V) was applied. The electrolyte suppresses the dissolution of TMs and is able to form a resilient SEI on the anode which mitigates the active lithium loss caused by the TM-catalyzed parasitic reactions.

High LiFSI concentration plays an important role in high voltage stability (up to 5 V), suppression of stainless steel corrosion, SEI formation capability on Si anode, high Li⁺ transference number (t_{li+}) and high temperature stability.

Super-concentrated ionic liquid electrolytes based on PMpipFSI/LiFSI were studied as high voltage electrolyte and its advantage was demonstrated in NMC532/Li cycled at 4.5 V and 4.7 V and NMC532/Si-graphite full cells.

Molecular dynamics simulation reveals strong correlations of cation-anion and anion-lithium ion in the super-concentrated IL electrolyte, indicating a highly ordered nanostructural organization, where lithium ions are distributed between solvation layers of cation-anion.

